
Towards Good Practice for Action Recognition
with Spatiotemporal 3D Convolutions

Kensho Hara, Hirokatsu Kataoka, Yutaka Satoh
National Institute of Advanced Industrial Science and Technology (AIST)

Tsukuba, Ibaraki, Japan
Email: {kensho.hara, hirokatsu.kataoka, yu.satou}@aist.go.jp

Abstract—The purpose of this study is to explore good practice
for training convolutional neural networks (CNNs) with spa-
tiotemporal three-dimensional (3D) kernels. Recently, 3D CNNs
in the field of action recognition are rapidly developed, and
the performance levels of them have improved significantly.
However, to date, conventional research has mainly focused on
their architecture, and has not sufficiently explored their training
configurations. We conduct various experiments with different
training configurations on Kinetics, UCF-101, and HMDB-51
datasets to share the knowledge of 3D CNNs for the research
community. According to the results of those experiments, the
following conclusions could be obtained. (i) Data augmentation
by spatiotemporal random cropping improved the performance
levels. (ii) Data augmentation by multi-scale spatial cropping in-
creased the accuracies in most cases whereas multi-scale temporal
cropping decreased them. (iii) A corner cropping strategy, which
is previously shown as a good method for two-stream 2D CNNs,
resulted lower accuracies for 3D CNNs compared with simple
random cropping. (iv) Freezing early layers of 3D CNNs improved
the performance levels when fine-tuning 3D CNNs on a relatively
small dataset.

I. Introduction

Vision algorithms for videos have achieved remarkable
progress, as with those for images. In particular, action recog-
nition accuracy has been significantly improved. For instance,
accuracies in UCF-101 [1] and HMDB-51 [2], which are repre-
sentative video datasets, improved from 88.0% and 59.4% [3]
to 98.0% and 80.7% [4] in last three years, respectively.
Developments in large-scale video datasets and convolutional
neural networks (CNNs) mainly contribute to this progress.
Data-scale of video datasets has recently grown. Until

several years ago, the data-scale of video datasets was rel-
atively small compared with image datasets, such as Ima-
geNet [5]. It is difficult to train CNNs from scratch using
relatively small datasets, such as UCF-101 and HMDB-51.
More recently, larger video datasets including Sports-1M [6],
YouTube-8M [7], and Kinetics [8] were released and used
for training CNNs. Some works showed that the use of the
Kinetics dataset, which includes more than 300 K temporally
trimmed videos, enables training of very deep CNNs even

© 2018 IEEE. Personal use of this material is permitted. Permission from
IEEE must be obtained for all other uses, in any current or future media,
including reprinting/republishing this material for advertising or promotional
purposes, creating new collective works, for resale or redistribution to servers
or lists, or reuse of any copyrighted component of this work in other works.

without pretraining on any datasets [9], and that Kinetics
pretrained CNNs achieved state-of-the-art performance [4].

CNNs for action recognition have also been developed in
several years. Similar to image recognition, CNNs with 2D
convolutional kernels firstly proposed to recognize actions
in videos [3], [10], [11]. Such 2D CNNs often utilize the
two-stream architectures that combine both stacked flow and
RGB images to capture not only appearance but also motion
information. One of the advantages of the 2D CNNs is that
they can be pretrained on large-scale image datasets, such as
ImageNet, because the number of convolutional kernel dimen-
sions are the same (i.e. 2D convolutions). More recently, CNNs
with spatiotemporal 3D convolutional kernels, which can
learn spatiotemporal feature representation from raw videos,
achieved better performance than 2D CNNs. Though training
of 3D CNNs is difficult because of the immense number of
parameters in them, which are much larger than those of 2D
CNNs, the use of recent large-scale video datasets enables the
training and significantly improves their performance [4], [9].

Whereas 3D CNNs and large-scale datasets achieved signif-
icant performance improvements in action recognition, achiev-
ing good performance using 3D CNNs is not trivial. Conven-
tional research has mainly focused on their architecture [4],
[9], [12]. However, we have to tune hyper parameters and
select training configurations to achieve the best performance
even using well-organized architectures. Though some works
showed such good practice for 2D CNNs [11], good practice
for the training of 3D CNNs is not sufficiently explored.

In this study, we conduct various experiments using the
Kinetics, UCF-101, and HMDB-51 datasets in order to ex-
plore good practice for training 3D CNNs. We focus on
configurations of data augmentation and fine-tuning for 3D
CNNs. Several data augmentation configurations for videos,
such as spatiotemporal random cropping [4], [12] and spatial
corner cropping [11], are used by different researchers. In
the experiments, we compare these configurations and show
the best configuration for 3D CNNs. We then compare fine-
tuning configurations. Most works for 3D CNNs train all
layers in fine-tuning [4] whereas some works reports that
freezing early layers and training only later layers achieved
the best performance [9]. We experimentally confirm the best
configuration of fine-tuning. We believe that these experiments
contribute to exploring good practice for the training of 3D
CNNs, and that sharing these knowledge for the research



community facilitates development of action recognition.

II. Related Work

Developments of two-stream 2D CNNs proposed by Si-
monyan et al. [3] have been improved action recognition
performance [10], [11], [13]–[16]. The two-stream CNNs use
RGB and stacked optical flow frames as appearance and
motion information, respectively, and showed that combining
the two-streams has the ability to improve action recogni-
tion accuracy. Numerous methods based on the two-stream
CNNs have been proposed to achieve further improvements
by introducing an advantage of hand-crafted features [10],
trying different combining method of the two streams [13]–
[15], and modeling long-range temporal structure [16]. The
abovementioned approaches are based on 2D CNNs, which
are not our main focus. Similar to this study, Wang et al.
tried to achieve good practice for the training of very deep
two-stream 2D CNNs [11]. Though their practice contributes
to improve action recognition performance, the practice was
examined only for 2D CNNs.
3D CNNs, which are our main focus, have recently begun

to outperform 2D CNNs through the use of large-scale video
datasets. These 3D CNNs are intuitively effective because
the 3D convolution can be used to directly extract spatio-
temporal features from raw videos. Based on our knowledge,
Ji et al. proposed the first method that utilizes 3D convolution
to extract spatio-temporal features from videos. After the
research, various researchers examined 3D CNNs to improve
their performance [4], [9], [12], [17], [18]. In their study, Tran
et al. trained a VGG-like 3D CNN, which they referred to
as C3D, using the large-scale Sports-1M dataset [12]. Their
experiments showed that a 3 × 3 × 3 convolutional kernel
achieved the best performance level. In another study, Varol
et al. showed that expanding the temporal length of inputs for
C3D improves recognition performance [17]. Meanwhile, Kay
et al. showed that the use of their proposed Kinetics dataset
for the training of 3D CNNs significantly improves recognition
accuracy [8]. In still another study, Carreira et al. achieved
state-of-the-art performance using inception [19] based 3D
CNNs, which they referred to as I3D [4]. In our previous study,
we examined 3D residual network (ResNet) architectures and
showed that deeper architectures achieved better recognition
accuracy [9].
Though, as described above, previous works mainly focused

on architectures of 3D CNNs, few works explored good prac-
tice for training the 3D CNNs. Varol et al. showed results of 3D
CNNs with different data augmentation configurations [17].
However, their experiments only examined data augmentation
for only fine-tuning. In this study, we conduct experiments with
different data augmentation configurations for both training
from scratch and fine-tuning, as well as different configurations
of fine-tuning.

III. Method
A. Network Architecture

In this study, we use 3D ResNet [9], which is a spatiotem-
poral extension of original 2D ResNet [20]. ResNet, which is
one of the most successful architectures in image classification,
provides shortcut connections that allow a signal to bypass
one layer and move to the next layer in the sequence. Since
these connections pass through the networks’ gradient flows
from the later layers to the early layers, they can facilitate the
training of very deep networks. Because 3D ResNet achieved
good performance in action recognition as shown in [9], we
adopt the ResNet architecture.

We use the 18-layer ResNet with basic blocks of the ResNet.
It is easy to utilize such relatively shallow network because
of its relatively small number of parameters. Thus, exploring
good practice based on the network is practically important.
Table I shows the network architecture. Each block consists
of two convolutional layers, and each convolutional layer is
followed by batch normalization and a ReLU. The sizes of
convolutional kernels in the blocks are 3 × 3 × 3. A shortcut
pass connects the top of the block to the layer just before the
last ReLU in the block. We use identity connections and zero
padding for the shortcuts of the ResNet block (type A in [20])
to avoid increasing the number of parameters. Strides of first
convolutional layers of conv3, conv4, and conv5 are set to two
to perform down-sampling of the inputs. A max pooling layer
in conv2 also down-samples the inputs with a stride of two.
Different from other convolutional layers, the size of conv1 is
7×7×7. The temporal stride of conv1 is 1 whereas the spatial
one is 2, similar to C3D [12].
B. Implementation

1) Training: We use stochastic gradient descent with mo-
mentum to train the networks and randomly generate training
samples from videos in training data in order to perform data
augmentation. In the experiments, we try different configu-
rations of the data augmentation as described in Section IV.
Here, we explain a common procedure among the configura-
tions. First, we select a temporal position in a video by uniform
sampling in order to generate a training sample. A 16-frame
clip is then generated around the selected temporal position.
If the video is shorter than 16 frames, then we loop it as
many times as necessary. Next, we select a spatial position
by the method that depends on the used data augmentation
configuration. The sample aspect ratio is 1 and the sample is
spatio-temporally cropped at the positions, scale, and aspect
ratio. We spatially resize the sample at 112 × 112 pixels. The
size of each sample is 3 channels × 16 frames × 112 pixels
× 112 pixels. Note that we used the sample size because of our
experimental environments, though using larger sizes of the
samples contributes to improve recognition accuracies [17] and
each sample is horizontally flipped with 50% probability. We
also perform normalization, which subtracts the mean values
of Kinetics from the sample for each color channel and divides
the values by standard deviations of Kinetics. All generated
samples retain the same class labels as their original videos.



TABLE I: Network Architectures. The dimensions of output
sizes are T × Y × X , and the sizes are calculated based on a
16 × 112 × 112-input. We represent x × x × x,F as the kernel
size, and the number of feature maps of the convolutional filter
are x × x × x and F, respectively. Each convolutional layer is
followed by batch normalization [21] and a ReLU [22]. Spatio-
temporal down-sampling is performed by conv3_1, conv4_1,
and conv5_1 with a stride of two. A max-pooling layer (stride
2) is also located before conv2_x for down-sampling. In addi-
tion, conv1 spatially down-samples inputs with a spatial stride
of two. C-d fc is a C-dimensional fully-connected layer, where
C is the number of classes.

Layer Name Output Size
Architecture

18-layer

conv1 16 × 64 × 64 7 × 7 × 7, 64, stride 1 (T ), 2 (XY)

conv2 8 × 32 × 32
3 × 3 × 3 max pool, stride 2

3 × 3 × 3, 64

3 × 3 × 3, 64

 × 2

conv3 4 × 16 × 16


3 × 3 × 3, 128

3 × 3 × 3, 128

 × 2

conv4 2 × 8 × 8


3 × 3 × 3, 256

3 × 3 × 3, 256

 × 2

conv5 1 × 4 × 4


3 × 3 × 3, 512

3 × 3 × 3, 512

 × 2

average pool, C-d fc, softmax

In our training, we use cross-entropy losses and back-
propagate their gradients. The training parameters include
a batch size of 128, weight decay of 0.001, and 0.9 for
momentum. When training the networks from scratch, we start
from learning rate 0.03, and divide it by 10 after the validation
loss does not improve during 10 epochs. Training is done for
250 epochs. When performing fine-tuning, we start from a
learning rate of 0.0003 and decrease it by the same procedure.
Training of fine-tuning is done for 100 epochs.

2) Recognition: We recognize actions in videos using the
trained model. We adopt the sliding window manner to gen-
erate input clips, (i.e. videos are split into non-overlapped 16
frame clips.) Each clip is cropped around a center position
with the maximum scale (i.e. the sample width and height are
the same as the short side length of the frame). We estimate
class probabilities of each clip using the trained model, and
average them to recognize actions in videos.

IV. Experimental Configuration
We try different configurations of the data augmentation

and fine-tuning, and compare accuracies of them in the exper-
iments. In this section, we describe the details.

A. Data Augmentation
We try the following data augmentation configurations. The

configurations are also shown in Figure 1.

Spatial center Spatial random

Multi-scale spatiotemporal randomMulti-scale spatial random Multi-scale spatial corner

Fig. 1: Data augmentation configurations.

• Spatial center: We fix the spatial position of each sample
in the center position. The spatial scale is also fixed in
the maximum scale, which is the same size as the short
side length of the frame. Thus, this configuration does not
include spatial augmentation except for horizontal flipping,
and perform only random temporal cropping.

• Spatial random: We randomly select the spatial position of
each sample by uniform sampling. The position is sampled
so that the cropping window is within a frame. The spatial
scale is fixed in the maximum scale similar to spatial center.

• Multi-scale spatial random: We randomly select the spatial
position and scale of each sample. The spatial position is
selected by the same procedure as spatial random. The
scale is randomly selected from

{
1, 1

21/4 ,
1√
2
, 1

23/4 ,
1
2

}
. Scale

1 means that the sample width and height are the same as
the short side length of the frame, and scale 0.5 means that
the sample is half the size of the short side length.

• Multi-scale spatial corner: Different from uniform sampling
of multi-scale spatial crop, we randomly select a spatial
position from the 4 corners and a center. This procedure is
proposed in [11] for two-stream 2D CNNs. The spatial scale
is randomly selected similar to multi-scale spatial random.

• Multi-scale spatiotemporal random: Spatial augmentation of
this configuration is the same as multi-scale spatial crop.
In addition, we select temporal scale from

{
3,2,1, 12 ,

1
3
}
. To

temporally crop based on the selected scale, we first select
st × 16-frame clip, where st is the temporal scale. We then
perform temporal scaling for the clip by nearest neighbor
scaling. For instance, scale 2 means that we first select a
16 × 2 = 32-frame clip, and then drop every three frames,
and scale 1

2 means that we first select a 16/2 = 8-frame clip,
and then make two copies of each frame. Therefore, the clip
sizes of every scale are 16, but they contains different scale
information.

B. Fine-tuning

In addition to data augmentation, we try different fine-tuning
configurations and compare the results of them. Fine-tuning
all layers would not be effective when using a small dataset.
Therefore, we change the extents of fine-tuned layers. We
freeze early layers and fine-tune layers above conv1, conv2,
conv3, conv4, and conv5, as well as fine-tuning all layers.



V. Experiments
A. Dataset
In the experiments, we used the Kinetics [8], UCF-101 [1],

and HMDB-51 [2] datasets. The Kinetics dataset has 400
human action classes, and consists of more than 400 videos
for each class. The videos were temporally trimmed and last
around 10 seconds. The total number of the videos is in excess
of 300,000. The number of training, validation, and testing sets
are about 240,000, 20,000, and 40,000, respectively.
UCF-101 includes 13,320 action instances from 101 human

action classes. The videos were temporally trimmed to remove
non-action frames. The average duration of each video is
about 7 seconds. Three train/test splits (70% training and 30%
testing) are provided in the dataset. Because of the relatively
small-scale of UCF-101, we fine-tuned the Kinetics pretrained
model on UCF-101 in the experiments.
HMDB-51 includes 6,766 videos from 51 human action

classes. Similar to UCF-101, the videos were temporally
trimmed. The average duration of each video is about 3 sec-
onds. Three train/test splits (70% training and 30% testing) are
provided in this dataset. We fine-tuned the Kinetics pretrained
model on HMDB-51 similar to the experiments in UCF-101.
For all datasets, we resized the videos to 240 pixels height

without changing their aspect ratios, and stored them.

B. Results
We began by training ResNet-18 on Kinetics with differ-

ent data augmentation configurations. In this experiment, we
trained ResNet-18 on the Kinetics training set and evaluated
the model on the validation set.
Table II shows the accuracies of ResNet-18. We can see that

spatial random achieved better accuracies than spatial center,
and that multi-scale spatial random achieved the best accu-
racies. Spatial center only performs horizontal flipping and
temporal random cropping whereas spatial random and multi-
scale spatial random performs spatial random cropping with
fixed and randomly selected scales, respectively. These results
indicate that spatial random cropping improved recognition
performance, and that multi-scale cropping further increased
the accuracies. It is considered that adding spatial variations
into training samples is important even for 3D CNNs.
The accuracies of multi-scale spatial corner were lower than

multi-scale spatial random. This result indicate that the corner
cropping strategy from 4 corners and a center is not effective
for the training of 3D CNNs though its effectiveness for the
training of two-stream 2D CNNs was shown in [11].
The accuracies of multi-scale spatiotemporal random also

slightly lower than multi-scale spatial random. multi-scale
spatiotemporal random adds multi-scale temporal cropping
into multi-scale spatial random. This result indicate that the
multi-scale temporal cropping decreased the accuracies even
though the multi-scale spatial cropping improved recognition
accuracies (comparison between spatial random and multi-
scale spatial random). It is considered that nearest neighbor
scaling of multi-scale temporal cropping makes the training
samples artificial.

TABLE II: Comparisons of ResNet-18 with different data
augmentation configurations in the Kinetics validation set.
Top-1, Top-5 means top-1 and top-5 accuracies, and Average
are averaged accuracies over top-1 and top-5.

Configuration Top-1 Top-5 Average

Spatial center 52.3 76.9 64.6

Spatial random 55.3 78.9 67.1

Multi-scale spatial random 57.0 80.3 68.7
Multi-scale spatial corner 53.2 77.2 65.2

Multi-scale spatiotemporal random 56.2 79.6 67.9

We next confirmed the results of fine-tuning with the
different data augmentation configurations. We fine-tuned the
Kinetics pretrained ResNet-18 on UCF-101 and HMDB-51.
We used three splits of both datasets and show the results of
them.

Table III shows the top-1 accuracies. We can see that multi-
scale spatial random achieved the best accuracies in both
datasets except for split 2 of UCF-101. We can also see that
spatial random achieved the best averaged accuracies over
three splits in UCF-101. These results indicate that the multi-
scale spatial cropping often improve recognition accuracies but
the single-scale spatial cropping is sufficient in some cases.

The accuracies of Multi-scale spatial corner and multi-scale
spatiotemporal random were lower than those of multi-scale
spatial random in most cases. These results support that the
corner cropping and multi-scale temporal cropping are not
effective even training in relatively small datasets.

We also examine the fine-tuning configurations. In this
experiment, we fine-tuned the Kinetics pretrained ResNet-18
on UCF-101 and HMDB-51 while changing the extents of the
fine-tuned layers.

Figure 2 shows the accuracies of UCF-101 and HMDB-
51. We can see that fine-tuning layers above conv4 achieved
the best performance on both UCF-101 and HMDB-51 except
for split 1 of HMDB-51. These results indicate that freezing
early layers and fine-tuning later layers are effective for such
relatively small datasets. In addition, it is considered that
generalization ability of low-level features extracted by the
early layers trained on Kinetics is high because the frozen
features effectively worked on other datasets.

We finally show some recognition examples of Kinetics
in Figure 3. The recognition results were output by ResNet-
18 trained on the multi-scale spatial random configuration.
Top three rows are correctly recognized examples. Presenting
weather forecast and bench pressing are the classes that have
the first and second best accuracies, respectively. These action
classes clearly include a main person and object (a display
and weight) Therefore, it is relatively easy to recognize these
actions. Salsa dancing is the class that has the middle rank
accuracy. Because Kinetics include various actions related
to dances, such as belly dancing, breakdancing, and robot
dancing, it is difficult to distinguish such actions compared
with abovementioned classes. The bottom row of Figure 3



TABLE III: Comparisons with different data augmentation configurations in UCF-101 and HMDB-51. Fine-
tuning is performed for all layers. Average means the averaged accuracies over all splits, and ± means that their
standard deviations.

Configuration
UCF-101 HMDB-51

split 1 split 2 split 3 Average split1 split 2 split 3 Average

Spatial center 82.4 82.9 81.8 82.4 ± 0.4 54.8 53.3 51.8 53.3 ± 1.2

Spatial random 84.5 85.4 84.5 84.8 ± 0.4 56.6 54.2 55.2 55.3 ± 1.0

Multi-scale spatial random 85.0 83.8 84.9 84.6 ± 0.5 57.5 55.2 55.7 56.1 ± 1.0

Multi-scale spatial corner 84.2 83.9 82.5 83.5 ± 0.7 56.3 52.1 54.6 54.3 ± 1.7

Multi-scale spatiotemporal random 84.4 83.2 83.1 83.6 ± 0.6 54.8 55.0 51.2 53.7 ± 1.8

All >conv1 >conv2 >conv3 >conv4 >conv5
Layers Fine-tuned

0.80

0.82

0.84

0.86

0.88

Ac
cu

ra
cy

split1
split2
split3

(a) UCF-101.

All >conv1 >conv2 >conv3 >conv4 >conv5
Layers Fine-tuned

0.50

0.52

0.54

0.56

0.58

0.60

0.62

Ac
cu

ra
cy

split1
split2
split3

(b) HMDB-51.

Fig. 2: Comparisons with different fine-tuning configurations. “>convX” means that all layers above convX are finetuned, and All means
that the entire net is finetuned.

shows a misclassified example. Slapping is the class that has
the worst accuracies. Because variation of this action class
is very large, it is difficult to learn such ambiguous concept.
In addition, a man woke other man up in this example video.
Therefore, the misclassification to baby waking up is intuitively
reasonable.

VI. Conclusion

In this study, we conducted various experiments with differ-
ent training configurations on Kinetics, UCF-101, and HMDB-
51 datasets to share the knowledge of 3D CNNs for the
research community. According to the results of those exper-
iments, the following conclusions could be obtained. (i) Data
augmentation by spatiotemporal random cropping improved
the performance levels. (ii) Data augmentation by multi-
scale spatial cropping increased the accuracies in most cases
whereas multi-scale temporal cropping decreased them. (iii) A
corner cropping strategy, which is previously shown as a good
method for two-stream 2D CNNs, resulted lower accuracies
for 3D CNNs compared with simple random cropping. (iv)
Freezing early layers of 3D CNNs improved the performance
levels when fine-tuning 3D CNNs on a relatively small dataset.

In our future work, we will further investigate good practice
for deeper models.

References

[1] K. Soomro, A. Roshan Zamir, and M. Shah, “UCF101: A dataset of 101
human action classes from videos in the wild,” CRCV-TR-12-01, 2012.

[2] H. Kuehne, H. Jhuang, E. Garrote, T. Poggio, and T. Serre, “HMDB:
a large video database for human motion recognition,” in Proceedings
of the International Conference on Computer Vision (ICCV), 2011, pp.
2556–2563.

[3] K. Simonyan and A. Zisserman, “Two-stream convolutional networks for
action recognition in videos,” in Proceedings of the Advances in Neural
Information Processing Systems (NIPS), 2014, pp. 568–576.

[4] J. Carreira and A. Zisserman, “Quo vadis, action recognition? A new
model and the Kinetics dataset,” arXiv preprint, vol. arXiv:1705.07750,
2017.

[5] J. Deng, W. Dong, R. Socher, L.-J. Li, K. Li, and L. Fei-Fei, “ImageNet:
A Large-Scale Hierarchical Image Database,” in Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition (CVPR), 2009.

[6] A. Karpathy, G. Toderici, S. Shetty, T. Leung, R. Sukthankar, and
L. Fei-Fei, “Large-scale video classification with convolutional neural
networks,” in Proceedings of the IEEE Conference on Computer Vision
and Pattern Recognition (CVPR), 2014, pp. 1725–1732.

[7] S. Abu-El-Haija, N. Kothari, J. Lee, P. Natsev, G. Toderici, B. Varadara-
jan, and S. Vijayanarasimhan, “YouTube-8M: A large-scale video clas-
sification benchmark,” arXiv preprint, vol. arXiv:1609.08675, 2016.



Ground Truth: Presenting weather forecast Result: Presenting weather forecast

Ground Truth: Bench Pressing Result: Bench Pressing

Ground Truth: Salsa Dancing Result: Salsa Dancing

Ground Truth: Slapping Result: Baby waking up
Fig. 3: Examples of recognition results on Kinetics using ResNet-18 trained by multi-scale spatial random.

[8] W. Kay, J. Carreira, K. Simonyan, B. Zhang, C. Hillier, S. Vijaya-
narasimhan, F. Viola, T. Green, T. Back, P. Natsev, M. Suleyman,
and A. Zisserman, “The Kinetics human action video dataset,” arXiv
preprint, vol. arXiv:1705.06950, 2017.

[9] K. Hara, H. Kataoka, and Y. Satoh, “Can spatiotemporal 3D CNNs
retrace the history of 2D CNNs and Imagenet?” arXiv preprint, vol.
arXiv:1711.09577, 2017.

[10] L. Wang, Y. Qiao, and X. Tang, “Action recognition with trajectory-
pooled deep-convolutional descriptors,” in Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition (CVPR), 2015,
pp. 4305–4314.

[11] L. Wang, Y. Xiong, Z. Wang, and Y. Qiao, “Towards good practices for
very deep two-stream convnets,” arXiv preprint, vol. arXiv:1507.02159,
2015.

[12] D. Tran, L. Bourdev, R. Fergus, L. Torresani, and M. Paluri, “Learning
spatiotemporal features with 3D convolutional networks,” in Proceedings
of the International Conference on Computer Vision (ICCV), 2015, pp.
4489–4497.

[13] C. Feichtenhofer, A. Pinz, and R. Wildes, “Spatiotemporal residual
networks for video action recognition,” in Proceedings of the Advances
in Neural Information Processing Systems (NIPS), 2016, pp. 3468–3476.

[14] C. Feichtenhofer, A. Pinz, and R. P. Wildes, “Spatiotemporal multiplier

networks for video action recognition,” in Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition (CVPR), 2017.

[15] C. Feichtenhofer, A. Pinz, and A. Zisserman, “Convolutional two-stream
network fusion for video action recognition,” in Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition (CVPR), 2016,
pp. 1933–1941.

[16] L. Wang, Y. Xiong, Z. Wang, Y. Qiao, D. Lin, X. Tang, and L. Van Gool,
“Temporal segment networks: Towards good practices for deep action
recognition,” in Proceedings of the European Conference on Computer
Vision (ECCV), 2016, pp. 20–36.

[17] G. Varol, I. Laptev, and C. Schmid, “Long-term temporal convolutions
for action recognition,” IEEE Transactions on Pattern Analysis Machine
Intelligence, vol. PP, no. 99, 2017.

[18] K. Hara, H. Kataoka, and Y. Satoh, “Learning spatio-temporal features
with 3D residual networks for action recognition,” in Proceedings of the
ICCV Workshop on Action, Gesture, and Emotion Recognition, 2017.

[19] C. Szegedy, W. Liu, Y. Jia, P. Sermanet, S. Reed, D. Anguelov, D. Erhan,
V. Vanhoucke, and A. Rabinovich, “Going deeper with convolutions,” in
Proceedings of the IEEE Conference on Computer Vision and Pattern
Recognition (CVPR), 2015, pp. 1–9.

[20] K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for
image recognition,” in Proceedings of the IEEE Conference on Computer



Vision and Pattern Recognition (CVPR), 2016, pp. 770–778.
[21] S. Ioffe and C. Szegedy, “Batch normalization: Accelerating deep

network training by reducing internal covariate shift,” in Proceedings
of the International Conference on Machine Learning, 2015, pp. 448–4
56.

[22] V. Nair and G. E. Hinton, “Rectified linear units improve restricted
boltzmann machines,” in Proceedings of the International Conference
on Machine Learning. Omnipress, 2010, pp. 807–814.


